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1 INTROD UCTION i

1 Introduction

One purpose of our research is the investigation of the effectiveness and expressiveness of

AdaPT[I], a set of tanguage extensions to Ada 83, for distributed systems. As a part of

that effort, we are now investigating the subject of replacing, e.g. upgrading, software modules

while the software system remains in operation. The AdaPT language extensions provide a

good basis for this investigation for several reasons:

• they include the concept of specific, self-contained program modules which can be manip-

ulated,

support for program configuration is included in the language, and

although the discussion will be in terms of the AdaPT language, the AdaPT to Ada 83

conversion methodology being developed as another part of this project will provide a

basis for the application of our findings to Ada 83 systems.

The purpose of this investigation is to explore the basic mechanisms of the replacement pro-

cess. With this purpose in mind, we will avoid including issues whose presence would obscure

these basic mechanisms by introducing additional, unrelated concerns. Thus, while replace-

ment in the presence of real-time deadlines, heterogeneous systems, and unreliable networks is

certainly a topic of interest, we will first gain an understanding of the basic processes in the "

absence of such concerns. The extension of the replacement process to more complex situations
can be made later.

This report will establish an overview of the on-line upgrade problem, and present a taxon-

omy of the various aspects of the replacement process. Future reports will discuss specific ways

AdaPT can be used to address the problem.

2 Overview of AdaPT

This section will provide a brief introduction to AdaPT. First, we will provide an overview of

the new constructs introduced in AdaPT. We will then present a small example to illustrate

the usage of these constructs in an AdaPT program.

2.1 Features Introduced in AdaPT

The main features introduced in AdaPT are the partition, the node, and the public. These

are summarized below and defined in detail in [1].

• Partitions A partition may be considered to constitute a "class" in the sense used in

object oriented systems and languages. However, it is closely modeled on the Ada pack-

age, presenting, in an interface specification, the items which are made available for its
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partition P is

end P;

partition body P is

begin

end P;

Figure 1: Sample Partition Declaration

interaction with other system components. Thus its interface may contain procedures
and functions, task declarations, and constants and exception declarations. It may not

contain any object or type declarations. An outline of a partition declaration is shown in

Figure t. To help in defining the initial configuration of a partition instance, a partition

may have parameters (in parameters only), which are supplied by the program invoking

the allocator when a new instance of the partition is created. The partition is the unit of
distribution in AdaPT.

A partition is a library unit, and constitutes a type declaration. Other units may have

with clauses to give them access to the definition in the library, and within the scope of

the with clause they may declare variables of the type. However, the type is an implicit

access type, and no instance of the partition is created by such a declaration. Creation

of new instances of a partition are obtained by the use of new allocator statements, but

these are permitted only in the definition of nodes which are described in the following

paragraphs. Once a partition instance has been created, references to that instance may

be circulated by using an assignment statement to copy the value of one (access) variable
to another.

The use of library units "withed" by a partition leads to a special problem. Such packages

may have "state", and consequently cannot be shared safely between different instances of

a partition and between different partitions which may "with" the same unit. Thus, the

semantics of with clauses for partitions are different from those for packages in a normal

Ado program. All units in the transitive closure of the directed graph formed by the with

clauses of a partition, up to but not including any public unit or any other partition,

form part of the partition. These units are replicated as a whole with each replication of

the partition. Each instance of a package or other object included in such a dependency

graph, belongs therefore to one and only one partition instance. In contrast therefore

to the public units described below, we sometimes refer to such packages as non-public
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node N is

end N;

with P:

node body N is

MY_P : P := new P'PARTITION:

begin

end N;

Figure 2: Sample Node Declaration

units. 1

• Nodes Nodes differ very little from partitions. They too have features corresponding to

those of packages; like partitions they have separate interfaces and bodies, and instance

variables to reference them. However, nodes can create new instances of partitions and

other nodes. Their role is to serve as units which will eventually be compiled and linked

to form executable binary objects. They are thus the units of configuration in AdaPT.

Figure 2 shows a simple node definition which includes the creation of a partition instance.

Note again that MY_P is an access type which points to an instance of partition P. Thus,

to create the object to which MY_P points, we must create an object of the anonymous

type for partition P. This is accomplished using the attribute 'PARTITION.

The issue of system construction and start up and elaboration is described in AdaPT as

normal Ads main program call for a first selected node, called the distinguished node;

this then "creates" others and so recursively until the whole system is elaborated.

• Conforrnant partitions To support the provision of changed modes in a program, par-

ticularly as a technique for recovery following failure of part of the system, partitions can

have "peers" which have identical interfaces but different bodies. In object oriented ter-

minology they would be of the same "type", possibly one a subtype of the other, capable

of providing the same set of actions for a client, albeit with different effect. In AdaPT,

a conformant partition has the same interface as the partition to which it conforms, and

access variables pointing to instances of conformant partitions may be used interchange-

ably with access variables pointing to instances of the original partition. In exact analogy

with the idea of conformant partitions, it is proposed to support conformant nodes. An

IThe word private has, of course, other connotations in Ada, including AdaPT.
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partition P is

end P:

partition body P is

end P:

partition Q is P: -- Q has the same interface as P

partition body Q is -- Q may have a different body as well as different context clauses

begin

end Q;

Figure 3: Conformant Partition Declaration

example of the creation of a conformant partition is shown in Figure 3.

It is likely that conformant partitions may give rise to extra overhead. Some provisions
may need to he made to explicitly note partitions which will certainly not have conformant

peers.

Public Units Partitions are permitted to share information, especially type information

to give the types of the messages which form the parameters of sub-programs and task

entries in the interfaces of partitions and nodes. Such sharing is permitted by sharing
constant state packages. In order to enable the compiler to check that the "constant state"

requirement is correctly followed, such shared units are called publics. Types in public

units may be private, and may be defined along with operations on them so that they

are "abstract data types". Public unit interfaces may include types (except for access

types), task types, task access types, static constants, subprograms (including generic

subprograms), packages (which inherit the restrictions placed on public units), privates,

exceptions, renames, and pragmas. The context clause of a public unit may include only

other public units. An example of a public declaration is shown in Figure 4.

2.2 A Simple Example of AdaPT Usage

In this section we present a short example of how the AdaPT constructs we have presented n_ay

be used to construct an AdaPT program. In this example, a public, SENSOR_DEFS, two parti-
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public P is

end P;

public body P is

end P;

Figure 4: Public Declaration

tions. SENSOR and MONITOR, and a node, N, are defined. The public provides the definition

for the type used by the partitions. The SENSOR partition provides a function. SAMPLE.

which returns information from a sensing device connected to the physical machine on which

that instance of SAMPLE resides. The MONITOR partition contains a task, CONTROLLER.

which is responsible for periodically obtaining a sample value from an instance of the SENSOR

partition. MONITOR also contains a procedure, CHANGE_SENSOR, which is used to change

the value of the access pointer used by CONTROLLER to indicate which instance of the SEN- .

SOR partition should be used to obtain data via the SAMPLE function. Upon its instantiation,

an instance of N initially receives pointers to two instances of the SENSOR partition. These

instances might reside on different physical machines, and one might be intended to serve as

a backup if the other fails. The instance of N also contains a task named SWITCHER which

serves as the on-going thread of control for node N 2. Inside the task SWITCHER, we show

how the access variable CURRENT_SENSOR may be set to reference different instances of the

SENSOR partition type at different times.

public SENSOR_DEFS is

type SAMPLE_TYPE is ...;
end SENSOR_DEFS;

with SENSOR_DEFS;

partition SENSOR is

function SAMPLE return SENSOR DEFS.SAMPLE_TYPE;

end SENSOR;

partition body SENSOR is

function SAMPLE return SENSOR_DEFS.SAMPLE TYPE is...;

end SENSOR;

20f course, as in the case of a package in Ada, there is a separate thread of control which executes ,the

initialization section of N. This thread of control disappears when the initialization section of N is completed.
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with SENSOR_DEFS:
with SENSOR:

partition MONITOR is

procedure CHANGE_SENSOR{NEW_SENSOR : in SENSORI:
task CONTROLLER is

entry START:

end CONTROLLER;

end MONITOR:

partition body MONITOR is

CURRENT_SENSOR : SENSOR:

SAMPLE_VALUE : SENSOR_DEFS.SAMPLE_TYPE:

procedure CHANGE_SENSOR(NEW_SENSOR : in SENSOR) is

begin

CURRENT_SENSOR := NEW_SENSOR;
end;

task body CONTROLLER is

begin

accept START;

loop

SAMPLE_VALUE := CURRENT SENSOR.SAMPLE;

end loop;

end CONTROLLER;

end MONITOR: -- partition

with SENSOR;

with MONITOR;

node N (SENSOR_I : in SENSOR; SENSOR_2 : in SENSOR) is

end N;

node body N (SENSOR_I : in SENSOR; SENSOR_2 : in SENSOR) is

MY_MONITOR : MONITOR := new MONITOR'PARTITION;

task SWITCHER is

end SWITCHER;

task body SWITCHER is
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begin

loop

-- wait for some signal to switch

if CURRENT_SENSOR = SENSOR_I then

MY_MONITOR.CHANGE_SENSO R{SENSOR_2):
else

Y,lY_MON ITO R.CHA N GE_S ENSOR(SENSOR_ I ):
end if:

end loop;
end SWITCHER:

begin
MY_MONITOR.CHANGE_SENSOR(SENSOR_I);

MY_MONITOR.CONTROLLER.START;

end N;

To avoid overcomplicating this example, we did not give the definitions of the node or nodes

which actually create these SENSOR partition instances, nor did we define a distinguished node

as required in an AdaPT program. While these omissions caused the example to be incomplete,

presenting the example in this form makes it easier to illustrate how the AdaPT constructs may

be used in a program. Additionally, this example was intended only to give a feel for the way

these constructs may be used. We therefore did not address some issues which would need to

be addressed in a more complete example, such as synchronization. For example, there is a

need to arrange appropriate synchronization of the use of the CHANGE_SENSOR operation

and the access to the current sensor by the task controller. We will address this problem in

section 5.

Having provided an introduction to AdaPT, we now discuss how AdaPT may be used to

provide for on-line replacement of program modules.

3 AdaPT and the Replacement Process

AdaPT was designed to provide language support in the areas of program distribution and

configuration. The features of AdaPT which provide this support are the new program unit

constructs (publics, partitions, and nodes) and the use of the access variable paradigm as

a means of referring to specific instances of partitions and nodes. The first subsection below

will discuss the usefulness of these constructs in providing for replacement of program modules

while the program remains on-line.

In order to achieve on-line upgrades, support for dynamic allocation and deaUocation of

program modules is necessary and will be discussed in separate subsections below.
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3.1 AdaPT's Support For Program Configuration

The strength of AdaPT's support for program configuration ties in its expficit definition of

typed modules for program distribution (partitions) and configuration (nodes). and ha its u_

of access variables to refer to instances of those typed program modules. Because partition

and node instances are instances of a type, they may be manipulated by the program itself at

runtime. Instances of these types may be created in an orderly manner using the allocator, and

a single access variable may be made to refer to different instances of a partition by changing the

value of that access variable 3. Program reconfiguration can thus be accompfished by changing

the values of a set of access variables in an orderly manner.

3.2 Operation of the Allocator

The original definition of AdaPT merely stated that instances of partitions and nodes were

created by the use of an allocator. This allocator was responsible for performinu all the necessary

steps for creating and initializing the unit being created. The allocator then returned a pointer

to the unit thus created. No more detailed mention was made as to the means by which unit

instantiation was accompfished.

To provide the capability of an on-line upgrade of a program module, it is necessary for

an executing AdaPT program to be able to dynamically link with and load object code which

was not in existence when the program's execution was first initiated. To provide executing

AdaPT programs with this ability, we interpret the definition of the allocator to be such that

it causes the underlying AdaPT run-time system to search the program library for the most

recent version of the object code corresponding to the program unit of which the allocator is

creating an instance. This object code will then be loaded onto the physical processor, and

elaboration of the program unit instance will proceed according to the rules set forth in [1].

The dynamic linking and loading of program module instances, as described in the previous

paragraph, is conceptually similar to the notion of conformant units already present in AdaPT.

Both concepts involve providing multiple body implementations for a single specification, and

both involve the definition of subtypes. However, the concept of conformant units is more

controlled because it explicitly creates new subtypes and provides for the new subtypes thus

created to be statically named at compile time. The dynamically linked and loaded subtypes

created by the allocator are implicitly created.

To illustrate the dynamic creation of partition instances, we can modify the AdaPT usage

example in section 2.2. Since these modifications involve only the means by which the SENSOR

partition instances are created, only the configuration level of the example, i.e. node N, needs
to be altered.

aIt should be remembered that although an access variable may referto an instance of a partitionor node.

that instance'sexistence is not dependent on that access variable.Thus, multiple access variablesmay referto

a singleinstance. However, ifa situationoccurs in which no access variable refersto an instance of a partition

or node. there isno mechanism for rediscoveringthat instance,and that instance islostto the program.
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Recall that in our previous example, node N received pointers to two instances of the

SENSOR partition, and switched from one to the other upon receiving a signal to do so. In

this example, node N creates a new instance of the SENSOR partition upon receiving a signal

to perform a dynamic replacement of the original partition instance. This occurs ia the task

N.SWITCHER. It should be noted that, like the previous example, this exaalpte is intended

only to show the general idea of how such a dynamic replacement might be accomplished, and

thus does not address all the issues associated with this replacement. These issues are. however,

addressed in the example in section 5.

with SENSOR: use SENSOR;
with MONITOR; use MONITOR:
node N is

end N:

node body N is

MY_MONITOR : MONITOR := new MONITOR'PARTITION:

MY_SENSOR, NEW_SENSOR : SENSOR;

task SWITCHER is

end SWITCHER:

task body SWITCHER is

begin

-- Receive the signal to perform a dynamic replacement of the sensor

-- partition.

NEW SENSOR := new SENSOR'PARTITION;

MY_MONITOR.CHANGE SENSOR(N EW_SENSOR);
end SWITCHER;

begin

MY_SENSOR := new SENSOR'PARTITION;

MY_MONITOR.CHANGE_SENSOR(MY_SENSOR);
MY_MONITOR.CONTROLLER.START;

end N;

3.3 Deallocation of Partition Storage

As was mentioned above, the original definition of AdaPT in [1] made the implicit assumption

that, once in use, partition instances are never discarded. Thus, no method for deaUocating

partition instances was discussed. There are several outstanding issues associated with such

deallocation which merit further study. In this report, we will not address those issues. However.
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to provide a flavor of the possible use of such deaHocation, we make use of a variant of Ada

83's-UNCHECKED_DEALLOCATION procedure. 4 The procedure we will use has this form:

generic

type NAME is partition;

procedure UNCHECKED_DEALLOCATION(X : in out NAME);

An instantiation of this generic procedure is made using the name of the partition type that

will be deallocated. (Recall that a partition declaration defines an access type to an anonymous

type.) An example of such an instantiation follows:

partition SENSOR is

end SENSOR;

procedure UNCHECKED_SENSOR_DEALLOCATION is new

UNCHECK ED_DEALLOCATION(SENSOR);

To illustrate the usage of this deallocator, consider the following example where we have

modified the node N from the previous example to use UNCHECKED_DEALLOCATION.

Notice that the deallocation of the old SENSOR partition allows us to create new partitions as

needed within a loop.

node body N is

MY_MONITOR : MONITOR := new MONITOR'PARTITION;

MY_SENSOR, NEW_SENSOR : SENSOR;

procedure UNCHECKED_SENSOR_DEALLOCATION is new

UNCHECKED_DEALLOCATION(SENSOR);

task SWITCHER is

end SWITCHER;

task body SWITCHER is

begin

loop

-- Receive the signal to perform a dynamic replacement of the seaaor
-- partition.

NEW_SENSOR := new SENSOR'PARTITION;

MY_MONITOR.CttANGE_SENSOR(NEW_SENSOR);

UNCHECK ED_SENSOR_DEALLOCATION(MY_SENSOR);

See [2] for additional discussion of this issue.
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MY_SENSOR := NEW_SENSOR:

end loop;
end SWITCHER:

begin

MY_SENSOR := new SENSOR'PARTITION:

MY_MONITOR.CHANGE SENSOR(MY_SENSOR);

MY_MONITOR.CONTROLLER.START:
end N:

A potential problem e.,dsts if UNCHECKED_SENSOR_DEALLOCATION(MY_SENSOR}

is called when MY_SENSOR is a remote partition. In this case, an exception may need to be

raised, but further study is needed. Also. the user is expected to have aborted any active tasks

within the partition before using the deallocator.

4 The Replacement Process

Having presented an overview of AdaPT, we now begin a discussion of the replacement process

itself. First, we discuss five parameters which may be used to characterize the replacement

process. We then use these parameters to form a taxonomy of the replacement process.

4.1 Characterization of the Replacement Process

The complexity of the general problem of program module replacement is due to the wide variety

of situations under which the replacement process must occur. The study of this problem can

be simplified by breaking it down into a number of cases. To allow the problem space to be

broken down, we have determined five parameters which can be used to classify instances of

the problem. These parameters are:

• the type of replacement,

• the type of module to be replaced,

• the location of the replacement module(s),

• the need for a replacement module's state to match that of the module it is replacing,

and

• the degree of change involved between the specification of the original module and the

specification of its replacement.

These five parameters will be explained below.
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Types of Replacement

We divide replacement processes into two types: planned and unplanned. A planned replacement

is one where the system knows about the upcoming replacement before the module to be

replaced is deactivated. An unplanned replacement is one where the system does not know of

the need for the replacement until the module in question is found to be no longer in service. The

main difference between these two cases is that the system designer typically has more options

open to him in the planned case due to the fact that the original module is still available for use.

An example of a planned replacement is that of an operator instructing the system to replace

a program module with a new version of that module. (This new version wo,ld presumably

incorporate bug fixes, expanded capabilities, etc.) An example of an unplanne_ replacement is

that of a loss of power to a physical machine. The latter would result in the unexpected loss of

all system functions resident on that processor.

Kinds of Replacement Modules

The design of AdaPT provides two syntactic units that can be replaced, nodes and partitions.
These are the only module types whose replacement will be considered in this discussion. The

replacement of a node will usually require the replacement of its partitions.

Possible Locations

There are three possible situations regarding the location of the replacement module(s):

• local, meaning the replacement module is to reside on the same node as tile module being

replaced,

• remote, meaning the replacement module is to reside on a different node from the module

being replaced, and

• multiple remote, meaning that various portions of a node are replaced by modules on

different nodes.

State

There are significant differences in the replacement process depending upon the role of state in

the module being replaced. There are two different cases to be considered:

• The module to be replaced has no state and creates no state via the allocator.

• The module to be replaced contains state whose consistency must be maintained through-

out the replacement process.
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Module Specifications

As a program evolves over time, changes will be made to various modules of that program.

These changes fall into three categories:

• changes in which the module's specification remains unchanged, as in conformaat parti-
tions in AdaPT.

• changes in which the module's specification is extended, i.e. items are added to the

module's specification, as in inheritance in object oriented languages, and

• changes in which the module's specification is reduced, i.e. items are removed from the

module's specification, as is permitted in some object oriented laguages.

A fourth category, where some items are added to the module's specification while other items

are removed, is merely a composition of the second and third categories listed above. We will

therefore not address this fourth category separately.

4.2 Taxonomy of the Replacement Process

In the previous section, we presented five parameters of the replacement process. In our dis-

cussions of these parameters, we listed the possible values these parameters may take on. Any

instance where a module is to be replaced may be classified by listing the values of these param-

eters. Because there are a finite number of parameters, and a finite number of values for those

parameters, there is a finite number of combinations of those parameters values. Additionally,
some combinations of parameter values will not occur.

To aid in understanding what cases are possible, we have created the acyclic directed graph

shown in Figure 5. In this graph, the vertices other than "Enter" and "Exit" represent the

possible values for the five parameters of the replacement process, with the vertices representing

values corresponding to the same parameter being placed at the same level as measured from

the "Enter" vertex. The arcs connecting the nodes represent possible combinations, i.e. the
presence of an arc from "Partition" to "Remote" indicates that this combination of values is

permissible, while the absence of an arc from "Partition" to "Multiple Remote" indicates that

this combination is not permissible. A path describing a module replacement situation may

be obtained by traversing the graph from vertex marked "Enter" to the vertex marked "Exit".

At each vertex encountered during the traversal, the path should follow the arc to the vertex

which represents the parameter value corresponding to the situation being classified, or the arc
to "Exit" in the case of the last level of vertices.

Our approach to the replacement problem is to investigate the various possible cases to

learn what techniques are needed to solve that particular case. These techniques can then be

applied to solve the general case. In the next section, we present a solution to one of the possible
module replacement situations.
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Figure 5: Reconfiguration Situation Classification Graph



•5 REPLACEMENT EXAMPLE t5

5 Replacement Example

In this section, we will provide a simple example of the replacement process. First. we will

describe the problem and classify it according to the parameters listed above. Next, we will

show a simple implementation of the example in AdaPT.

5.1 Example Description

As was stated earlier, our intention is to study the replacement process itself and to avoid the

inclusion of concerns not directly related to the basic replacement process. With this in mind,

we have chosen a simple example to illustrate a basic replacement process. In this example.

we have constructed a node which is responsible for maintaining a server partition. This server

partition is to be used by clients on remote nodes. The node we have constructed also has

the capability to replace the server partition upon receiving an appropriate signal from some

remote entity.

When replacing a partition instance, the instance being replaced must not be deallocated

until all potential clients have been notified of the new partition instance. In our solution we

require that all potential clients must "register" with the node before using the server. As

cLients make calls to the server partition instance which is to be replaced they are notified of .

the change and given access to the new server partition instance. The node keeps track of how

many clients have been notified of the change. When all have been notified, the old server

partition instance can be deallocated.

It should be noted that the maximum amount of time that will transpire before the old

server partition instance can be deallocated is the potential maximum amount of time between

server calls for any client which has registered. In the case of periodic clients with long periods

or for aperiodic clients, this wait may be unduely long. For these cases, a "de-register" operation

is provided. After de-registering, the clients must register again before using the server.

This solution assumes that the clients will not send a second request until they have received

a reply to their first request. If the clients did not wait for the reply to their request, the node

would have to employ some other mechanism to determine whether it could safely deallocate

the partition instance being replaced. To avoid obscuring the objective of our example, i.e.

to study the underlying mechanisms of one case of the replacement problem, we chose not to

include such considerations in this example.

5.2 Example Classification

This small example can be classified simply. Traversing the replacement classification graph in

Figure 5, we classify this example as an instance of planned, partition, local, no state, unchanged

specification replacement. The classification path corresponding to this example is shown, in
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Local

En_r

Planned s Unplanned )

Exit

Figure 6: Replacement Example Classification

Figure 6. In this figure, nodes and edges on the path are dark, while those not on the path are
dotted.

5.3 Example Implementation

In our implementation of this example problem, we define four program units:

• package LOCKER,

• public COORDINATOR_DEFINITION,

• partition SERVER_TYPE, and
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N

Coordinator >

CURRENT_SERVER NEW_SERVER

Figure 7: Diagram of Example Implementation

• node N.

A problem could occur if an access variable pointing to a partition instance could be changed

by one thread of control while the access variable is being used by another thread of control.

This problem corresponds to the Readers-Writers problem and in our example, the package
LOCKER is used to solve it.

Public COORDINATOR_DEFINITION provides a task type which is used by instances of

partition SERVER_TYPE and node N to coordinate the replacement process.

Partition SERVER_TYPE implements the service provided to the clients.

Node N creates instances of partition SERVER_TYPE as needed, and provides overall con-

trol of the replacement process.

A simple diagram of node N, which consists of the coordinator partition and server parti-

tions, is shown in Figure 7. The following is our implementation of this example:

-- This package provides a simple solution to the readers-writers problem.

-- It is modelled after the solution in Barnes' "Programming in Ada', 3rd ed.
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package LOCKER

task type LOCK is

entry READ;

entry WRITE;

entry DONE;
end LOCK;

end LOCKER:

package body LOCKER is

task body LOCK is

NO_WRITE : BOOLEAN := FALSE:

READERS : NATURAL := 0;

begin

accept WRITE:

accept DONE:
CONTROL:

loop
select

accept READ;

READERS := READERS + 1;
or

accept DONE;

READERS := READERS - 1;
or

accept WRITE do

CLEAR_READERS:

while READERS > 0 loop

accept DONE;

READERS := READERS - 1;

end loop CLEAR_READERS;
end WRITE;

accept DONE;
end select;

end loop CONTROL;
end LOCK;

end LOCKER;

-- This public provides a tasked used for communication between the server

-- partition and its controlling node during the replacement process.
public COORDINATOR_DEFINITION is

task type COORDINATOR_TYPE is
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entry ADDCLIENT -- A new potential client has 'registered'.

entry CHANGE MADE; -- A client has "checked in" - ie: a previously

-- register client has been notified of the

-- server change.
entry RESET_COUNT; -- Reset the count of clients who have checked in.

entry COUNT REACHED_ -- Accepted only when all clients have checked in.

entry DELETE CLIENT; -- A potential client has 'deregistered' either

-- when there is not a server change in progress

-- or when there is a server change but the

-- client wasn't aware of the change (change

-- made wasn't called for it.)

entry DELETE_UPDATED_CLIENT:

-- A potential client has 'deregistered' during

-- a server chan_e and the client had previously

-- been notified of the server change (change

-- made was previously called for it.)

end COORDINATOR_TYPE:

end COORDINATOR_DEFINITION:

public body COORDINATOR_DEFINITION is

task body COORDINATOR_TYPE is

NUM_CLIENTS : NATURAL := 0;

NUM_CHANGED : NATURAL :-- 0;

begin

loop
select

accept ADDCLIENT;

NUM CLIENTS := NUM CLIENTS + 1;
or

accept CHANGEMADE;

NUM_CHANGED := NUM_CHANGED + 1;
or

accept RESET_COUNT;

NUM_CHANGED :-- 0;
or

when NUM_CHANGED = NUM_CLIENTS =>

accept COUNT_REACHED;
or

accept DELETECLIENT;

NUM_CLIENTS :-- NUM_CLIENTS - 1;
or

accept DELETEUPDATEDCLIENT:

NUM CLIENTS := NUM_CLIENTS - 1;

NUM_CI-IANGED :-- NUM_CHANGED - t;
or

terminate;
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end select

end loop;

end COORDINATOR_TYPE;

end COORDINATOR_DEFINITION:

This partition defines a server. While the service it performs is quite

-- simple, it is sufficient for the purpose of this example.

with COORDINATOR_DEFINITION;

partition SERVER_TYPE(COORDINATOR : in

COORDINATOR_DEFINITION.COORDINATOR_TYPE) is

-- This is the service procedure provided by this server. The X parameter

-- is the only parameter used to perform this service. The second parameter,

-- CALL_NEXT, is used to redirect the client to the new server once a

replacement process has been initiated.

procedure P(X : in out INTEGER; CALL_NEXT : in out SERVER_TYPE):

-- This procedure is called by the controlling node to notify the partition

-- that it is being replaced. It also passes a pointer to the replacement

partition, so this partition can pass it on to the clients.

procedure SET_NEXT(NEXT : in SERVER_TYPE);

end SERVER_TYPE;

with LOCKER;

partition body SERVER_TYPE(COORDINATOR : in

COORDINATOR_DEFINITION.COORDINATORTYPE) is

-- This variable is used to hold a pointer to the partition instance that

-- should be used for the next call made by the client.

NEXT_SERVER : SERVER_TYPE;

-- This task is used to control access to the variable NEXT_SERVER.

NEXT_LOCK : LOCKER.LOCK;

procedure P(X : in out INTEGER; CALL_NEXT : in out SERVER_TYPE) is

begin

X := X • 2; ---- Just a simple function to do some manipulation on X.

-- The remainder of this procedure deals with the replacement

-- process.

--- First, we must get read access to the pointer to the partition to be
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-- used for the next call.

NEXT_LOCK.READ;

-- If a different partition is to be used for the next call, pass back

-- the pointer to that partition and make a note that another client

-- has been informed of the change,

if NEXT_SERVER <> CALL_NEXT then

CALL NEXT := NEXT_SERVER:

COORDINATOR.CHANGE_MADE

end if;

-- Now, release the lock on the pointer to the next partition to be used.

NEXT_LOCK.DONE;

end P;

-- This procedure is used to set the partition's pointer to the partition

-- to be used for the next call.

procedure SET_NEXT(NEXT : in SERVER TYPE) is

begin

N EXT_LOC K.W RITE;

NEXT_SERVER := NEXT;

NEXT_LOCK.DONE;

end SET_NEXT;

end SERVER_TYPE;

-- This node creates server partitions and replaces them upon receiving

-- commands from an external source.

node N is

-- This function returns the value of the current server. To conform to the

-- replacement protocol, a client MUST call this function BEFORE using the

-- server. Calling this function "registers" the client with the

-- COORDINATOR task. This registration is important to the replacement

-- process.

function REGISTER_CLIENT return SERVER_TYPE;

-- This procedure de-registers a client. Used when a client no longer

-- needs the server or when there may be a long time before the next

-- usage. Server is needed as a paramater to note if the cfient

-- has been told of possible server change in progress.

procedure DEREGISTER CLIENT (SERVER : in out SERVER_TYPE);

-- This procedure causes the node to replace the active server partition

-- instance with a partition instance of the type currently in the library.
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procedure INITIATE_REPLACEMENT;

end N;

with LOCKER:

with COORDINATOR_D EFINITION:

node body N is

-- This task is used to coordinate the replacement activities of this

-- node and its server partition.

COORDINATOR : COORDINATOR_DEFINITION.COORDINATOR_TYPE:

-- These variables are used to point to the server partitions used by this
-- node. Note that no more than two such partitions will be in use at

-- any given time.

CURRENT SERVER, NEW_SERVER : SERVER_TYPE:

-- This flag is used to indicate that the current server partition instance
-- is actually in the process of being replaced. This implies that the

-- replacement server partition instance has already been created and
-- initialized.

SWITCHING SERVERS : BOOLEAN := FALSE;

-- This task is used to control access to the CURRENT_SERVER and

-- SWITCHING_SERVERS variables.

SERVER_LOCK : LOCKER.LOCK;

--- This task is used to control the replacement process.

task REPLACEMENTCONTROL is

-- This entry MUST be called first. This ensures that no replacement

-- process can begin until the node and the partition are ready.

entry START;

-- This entry is indirectly called by a remote entity via the procedure

-- PERFORMREPLACEMENT. When this entry is called, a replacement

-- process begins. No other entry calls will be accepted until the

-- replacement is completed.
entry PERFORMREPLACEMENT;

end REPLACEMENTCONTROL;

task body REPLACEMENT_CONTROL is

TEMP : SERVER_TYPE;

begin

-- This task will not procede past this point until the node
-- initialization section calls this entry to signal that everything
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-- is ready.

accept START;

-- This is the main loop of this task. Inside this loop, the task

-- waits for the signal to replace the server partition. When this

-- signal comes (the entry is called), the task creates a new server

-- using the version currently in the library, waits until all known

-- clients have been notified to use the new server, and deallocates

-- the old server.

REPLACEMENT_LOOP:

loop

select

-- This entry signals that the server is to be replaced.

accept PERFORM REPLACEMENT;

-- To start the process, tell the COORDINATOR task to start

-- counting clients that check in and are told that the server

-- is being replaced.

COORDINATOR. RESET COUNT;

-- Create a new server partition, using the version currently

-- in the program library.

NEW_SERVER := new SERVER TYPE'PARTITION(COORDINATOR);

--- Set up the new server's pointer to the server to be used

-- for the next call.

N EW_SERV ER.SET_N EXT(N EW_SERVER);

-- Now that the new server partition instance has been created

-- and initialized, set the flag SWITCHING SERVERS to indicate

-- that the actual switch is now taking place.

SERVER_LOCK.WRITE;

SWITCHING SERVERS := TRUE;

SERVERLOCK.DONE;

-- Tell the current server that clients should be told to use

-- the new server.

CURRENT SERV ER.SET NEXT(N EW SERVER);

-- This entry call will block until all clients have been

-- informed about the server change.

COORDINATOR.COUNT_REACHED;

--- At this point, all clients know to use the new server partition.

-- This leaves us free to dispose of the old server partition.

-- First, we save a pointer to the old partition.

-- Second, we make the new server the current server.
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-- Third, we reset the flag SWITCHING_SERVERS to indicate that

-- the switch has been completed.

-- Finally, we dispose of the old server partition. For a

UN u_ _ N-- discussion of C.L_KED DEALLOCATIO_" of partitions, please

-- see the discussion of this example elsewhere in the report.

-- For these operations we need to get exclusive access to the

-- server variable CURRENT_SERVER and the flag SWITCHING_SERVERS.

SERVER_LOCK.WRITE:

TEMP := CURRENT_SERVER:

CURRENT_SERVER := NEW_SERVER:

SWITCHING_SERVERS := FALSE:

SERVER_LOCK.DONE:

or

-- The actual deallocation of the storage used by the discarded

-- partition instance can be accomplished without locking access

-- to the instance currently in use.

U NCH ECKED_DEALLOCATION(TEMP);

terminate;

end select:

end loop REPLACEMENT_LOOP;

end REPLACEMENT_CONTROL;

-- This function returns a pointer to the server currently in use. Note

-- that this function will block while task REPLACEMENT_CONTROL is actually

-- performing a server change.

function REGISTER_CLIENT return SERVER_TYPE is

-- This temporary variable must be used to allow us to relinquish our

-- READ access to the CURRENT_SERVER variable before exiting.

TEMP : SERVER TYPE;

begin

-- This informs the COORDINATOR task that the number of clients needs

-- to be incremented.

COORDINATOR.ADD_CLIENT;

-- This function cannot pass beyond this point while another thread of

-- control has WRITE access to the variable CURRENT_SERVER and the flag

-- SWITCHING_SERVERS.

SERVER_LOCK.READ;

-- If a new server partition instance is being brought into use, return

-- an access variable to the new instance. Otherwise, return an access

-- variable to the instance currently in use.
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if SWITCHING_SERVERS then

TEMP := NEW_SERVER:

-- This entry call must be made to inform the COORDINATOR task that
-- another client has been notified that it should use the new sever

-- partition instance.

COORDINATOR.CHANGE MADE;
else

TEMP := CURRENT_SERVER;
end if:

SERVERLOCK.DONE:

return TEMP;

end REGISTER_CLIENT:

-- This procedure deregisters a client. Used when a client no longer

-- needs the server or when there may be a long time before the next

-- usage. Server is needed as an in paramater to note if the client

-- has been told of possible server change in progress...Server is set
-- to null on the way out.

procedure DEREGISTER CLIENT (SERVER : in out SERVER_TYPE);

begin

-- This functioncannot pass beyond thispoint while another thread of

-- controlhas WRITE access to the variableCURRENT_SERVER and the flag

-- SWITCHINGSERVERS.

SERVERLOCK.READ;

-- If a new server partition instance is being brought into use, need

-- to note whether this client had been told of that change.

if SWITCHING_SERVERS and (SERVER = NEW_SERVER) then

-- Delete (deregister) a client that had been previously told of a

-- pending server change.

COORDINATOR.DELETE UPDATED_CLIENT;
else

-- Delete (deregister) a client that either had not been previously

-- told of a pending server change or there is no pending server

-- change

COORDINATOR.DELETE_CLIENT;
end if;

SERVER_LOCK.DONE;

SERVER :--null;

end REGISTERCLIENT;
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-- This procedure is used to hide task REPLACEMENT_CONTROL from the outside

-- users. This hiding ensures that only node N can start the

-- REPLACEMENT_CONTROL task.

procedure INITIATE_REPLACEMENT is
begin

REPLACEMENTCONTROL.PERFORMREPLACEMENT;
end INITIATE_REPLACEMENT:

begin

-- This is guaranteed to be the first call accepted by SERVER LOCK because

-- the first entry call accepted will be a WRITE, and because the only

-- other source of a WRITE call is task REPLACEMENT CONTROL which will
-- block until it receives the START call to be sent a few lines after this.

SERVERLOCK.WRITE;

--- Create a sever partition and pass it a reference to the COORDINATOR task.

CURRENT_SERVER := new SERVER_TYPE'PARTITION(COORDINATOR);

-- Initialize the server partition's next call pointer to the partition
-- itself.

CURRENT SERVER.SET_NEXT(CURRENT SERVER);

-- Release the lock on the server partition.

SERVERLOCK.DONE;

-- Let the REPLACEMENT_CONTROL task go into its loop and wait for a signal
-- to perform a replacement operation.

REPLACEMENT CONTROL.START;

end N;

6 Future Work

In this work we have initiated a discussion of on-line program module upgrades. We have

presented a system for classifying the various situations which arise in this problem. Also, we

have presented a solution to one of these situations. We propose to continue our investigations

of this problem in the following order (with reference to the taxonomy we presented):

• replacement of partitions when state must be transferred between partition instances.

• replacement of partitions where the replacement instance is located on a different node

from the instance being replaced,
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• replacement of a node by another node instance,

• replacement of a node where the partition replacement instances will be located on several

different nodes,

• replacement of a partition with an extended specification, and

• replacement of a partition with a reduced specification.

There are two additional topics which deserve further study. The first topic is the use of

UNCHECKED_DEALLOCATION to deallocate partitions. The second topic concerns the use

of dynamic linking and loading by the allocator. Problems may arise in determilfing which

version of the object code was used to instantiate a particular instance of a program unit.

This is similiar to polymorphism and dynamic binding of procedure calls in object oriented

languages. We will investigate these topics further as we continue our research.
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